A studio for bird study

Tag: bird

Light Morph Harlan’s Hawk – A Noteworthy Specimen

by Bryce W. Robinson

Adult light morph "Harlan's" Red-tailed Hawk - Buteo jamaicensis harlani

Adult light morph “Harlan’s” Red-tailed Hawk – Buteo jamaicensis harlani

I wanted to share this specimen I found today while going through the small bird collection at Boise State University. It is a great example of the variable traits of the Red-tailed Hawk subspecies harlani. I really enjoy the variable plumages of the Red-tailed Hawk in North America. At the top of my list, as with most Red-tailed Hawk fans, is the Harlan’s.

Here are a few things I found interesting when I first found the bird:

  • Some tell-tale light Harlan’s traits – whitish head with streaking, red/pink tail fading to white/gray at the base (Harlan’s tails are ultra variable, but I’ve seen this regularly on light Harlan’s), Harlan’s spotting on tail, warm tones in upper tail and dorsal area, blotchy streaking on belly band.
  • Some not so Harlan’s traits – orange barring on leggings (typical of western RTHA), and barred belly band accompanying blotchy streaking. Strange and neat! Also of note is the amount of red in the tail. Common in Harlan’s, but often confused as a sign of intergradation.

I’m a bit disappointed that the tail wasn’t spread at preparation, so it was difficult to get a full glimpse of each feather. Additionally, there was no informative data accompanying the specimen, apart from a tag that read “Red-tailed Hawk”. As I’ve become more familiar with the art of museum preparation and the usefulness of specimens in research, I’ve become more aware of how important information is to put a specimen into context.

Even though the data is lacking, I’m really appreciative of the opportunity to look at this bird and take some photos. It’s a really interesting light morph Harlan’s that deserves some recognition. It made my day.

For some more insight into variability in light morph Harlan’s, check out this article by Jerry Liguori:

http://www.hawkwatch.org/blog/item/810-atypical-harlan-s-traits

Brant Feeding Behavior

by Bryce W. Robinson

I captured this clip two springs ago along the Washington coast. The short clip shows the feeding behavior of an immature Black Brant – Branta bernicla nigrigans. I find it interesting because it portrays the feeding behavior, but also shows one example of what a sea goose eats.

I felt confident that this bird was taking a break from some direct migration. It was with an adult bird who was resting on the rocks just out of view of the camera. One bird seemed distracted by fatigue, the other by the need to feed. I did take advantage of that fact, and captured what I believe is an enlightening clip that can be referenced by others in the future.

Tail Pumping Behavior in the Black Phoebe

by Bryce W. Robinson

Black Phoebe - Sayornis nigricans. 14 x 17" prismacolor on bristol board. Image copyright Bryce W. Robinson

Black Phoebe – Sayornis nigricans. 14 x 17″ prismacolor on bristol board. Image copyright Bryce W. Robinson

The Black Phoebe – Sayornis nigricans in it’s simple suit of black and white, catches the eye of anyone remotely keen on the goings on of the natural world. This phoebe demands attention, even in a guild of flashy desert denizens. In doing so it provides some quality behavior birding that never disappoints.  

One behavior I have noted while watching the bird forage is the methodic tail flick, not uncommon in the family Tyrannidae, but somehow unique in the Black Phoebe. I’ve wondered about the habit, but never sought to satisfy the wonder until now. The illustration above came about in preparation for the coming San Diego Bird Festival that I will be attending. In practice, I decided to couple the illustration with looking into any insights in the literature regarding the tail pumping habits of the Black Phoebe.

In little time I found a paper (Avellis 2011). The study addressed four hypotheses explaining the behavior, the Balance Hypothesis where the phoebe tail pumps to maintain balance atop unstable perches, the Foraging Enhancement Hypothesis where tail pumping increases foraging success, the Signal to Territorial Intruders Hypothesis where the tail pumping signals conspecifics of the birds fitness and establishment on a territory, and the Signal to Predators Hypothesis where the tail pumps exhibit the birds vigilance amidst predators.

The results of the study indicated the following:

Balance Hypothesis – Not supported

Foraging Enhancement Hypothesis – Not supported

Signal to Territorial Intruders Hypothesis – Not supported

Signal to Predators Hypothesis – Supported

The paper reports that the Black Phoebe increased tail pumping rates significantly when a predator was detected either visually or audibly. The suggested purpose of tail pumping then is to advertise the birds awareness to the predators presence. Tail pumping communicates the phoebe’s health, and that it in turn will be a more difficult prey to capture.

So, when asked why the Black Phoebe pumps its tail, I’ll answer that the behavior is to exhibit the birds vigilance, acting as a deterrent for predators looking for the path of least resistance for procuring food. Another day, another bit of knowledge gained.

Referenced Literature:

Avellis, G. F. 2011. Tail Pumping by the Black Phoebe. The Wilson Journal of Ornithology 123:766-771

Thoughts on the Past, Present, and Future of the Snowy Plover in North America

by Bryce W. Robinson

Snowy Plover - Charadrius nivosus. 11 x 14 " prismacolor on bristol

Snowy Plover – Charadrius nivosus. 11 x 14 ” prismacolor on bristol. Image copyright Bryce W. Robinson 2015

I’m becoming increasingly fascinated with how our changing world may impact the distribution of a given species, either shifting or fragmenting breeding ranges. I have a particular affinity for the family Charadridae , and I’ve found myself paying closer attention to one species in particular, the Snowy Plover – Charadrius nivosus. The Snowy plover occupies a widespread but disjunct breeding range in its western North American population(Figure 1). This range is likely a result of the bird’s need for specific (in turn limited) habitat for breeding.

Figure 1. Range of Snowy Plover - Charadrius nivosus in North and Central America. Image taken from Birds of North America Online (see referenced information)

Figure 1. Range of Snowy Plover – Charadrius nivosus in North and Central America. Image taken from Birds of North America Online (see referenced information)

The Snowy Plover is a species that has faced many challenges with the ever increasing human presence. Throughout the bird’s North American breeding range (Figure 1), human impacts have caused a multitude of threats to its ability to reproduce. These threats include but are not limited to environmental contaminants, an increase in nest predators such as Raccoon, Common Raven, Coyote, and Red Fox, all of which have experienced a human-subsidized boost in population numbers in recent decades, and recreation on beaches causing both disturbance and nest destruction. A great discussion of all factors impacting Snowy Plover populations can be found on the Birds of North America species account under the Conservation and Management section.

Multiple organizations are working with state and federal wildlife authorities to augment the negative impacts humanity and its residuals are having on Snowy Plover populations. These organizations include Point Blue Conservation ScienceFriends of the Dunes, the National Audubon Society, and many others. The effort is impressive and has seen some success. Still, there is a looming threat on the horizon, the impacts of human induced climatic changes.

What the threats of climate change mean for the Snowy Plover in western North America and across the rest of its range in S. America are still to be determined, but I’d like to emphasize the need to determine and augment these threats as they are occurring. I’ve become aware of a population level analysis that is meant to track the distributional patterns of a given species throughout its yearly cycle (Ruegg et al. 2014). The idea is to identify population structures during the major life events of a species through genetic analysis of individuals at each location; breeding, migration, and non-breeding. Understanding where individuals spend each part of the year holds the power of  identifying where negative impacts are occurring that are driving population declines. This is the big idea behind the banding effort, but this technique provides larger sample size and more power for determining population structures. It’s a huge step in the right direction.

My point is, wouldn’t this be a great tool for assessing changes in populations of the Snowy Plover over its disjunct range as the impacts of climate change become more visible and severe? The answer is yes, and we ought to begin the effort…

Referenced Information:

Page, Gary W., Lynne E. Stenzel, G. W. Page, J. S. Warriner, J. C. Warriner and P. W. Paton. 2009. Snowy Plover (Charadrius nivosus), The Birds of North America Online (A. Poole, Ed.). Ithaca: Cornell Lab of Ornithology; Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/species/154

Accessed 7 February 2015

Ruegg, K. C., E. C. Anderson, K. L. Paxton, V. Apkenas, S. Lao, R. B. Siegel, D. F. Desante, F. Moore, T. B. Smith. 2014. Mapping migration in a songbird using high-resolution genetic markers. Molecular Ecology 23:5726-5739